direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C22×C13⋊C3, C26⋊2C6, (C2×C26)⋊3C3, C13⋊2(C2×C6), SmallGroup(156,12)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C13 — C13⋊C3 — C2×C13⋊C3 — C22×C13⋊C3 |
C13 — C22×C13⋊C3 |
Generators and relations for C22×C13⋊C3
G = < a,b,c,d | a2=b2=c13=d3=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c9 >
Character table of C22×C13⋊C3
class | 1 | 2A | 2B | 2C | 3A | 3B | 6A | 6B | 6C | 6D | 6E | 6F | 13A | 13B | 13C | 13D | 26A | 26B | 26C | 26D | 26E | 26F | 26G | 26H | 26I | 26J | 26K | 26L | |
size | 1 | 1 | 1 | 1 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ6 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ65 | ζ32 | ζ3 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 6 |
ρ7 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ6 | ζ3 | ζ32 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 6 |
ρ8 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | ζ65 | ζ32 | ζ3 | ζ6 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 6 |
ρ9 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ10 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | ζ6 | ζ3 | ζ32 | ζ65 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 6 |
ρ11 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ3 | ζ6 | ζ65 | ζ6 | ζ65 | ζ32 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 6 |
ρ12 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ32 | ζ65 | ζ6 | ζ65 | ζ6 | ζ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 6 |
ρ13 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | complex lifted from C13⋊C3 |
ρ14 | 3 | -3 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | -ζ1312-ζ1310-ζ134 | -ζ139-ζ133-ζ13 | complex lifted from C2×C13⋊C3 |
ρ15 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | complex lifted from C13⋊C3 |
ρ16 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | complex lifted from C13⋊C3 |
ρ17 | 3 | 3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ139-ζ133-ζ13 | ζ1312+ζ1310+ζ134 | complex lifted from C2×C13⋊C3 |
ρ18 | 3 | -3 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | ζ136+ζ135+ζ132 | -ζ1311-ζ138-ζ137 | complex lifted from C2×C13⋊C3 |
ρ19 | 3 | -3 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | -ζ1311-ζ138-ζ137 | -ζ136-ζ135-ζ132 | complex lifted from C2×C13⋊C3 |
ρ20 | 3 | -3 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | ζ139+ζ133+ζ13 | -ζ1312-ζ1310-ζ134 | complex lifted from C2×C13⋊C3 |
ρ21 | 3 | -3 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | ζ1311+ζ138+ζ137 | -ζ136-ζ135-ζ132 | complex lifted from C2×C13⋊C3 |
ρ22 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | complex lifted from C13⋊C3 |
ρ23 | 3 | 3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ136-ζ135-ζ132 | ζ1311+ζ138+ζ137 | complex lifted from C2×C13⋊C3 |
ρ24 | 3 | -3 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | -ζ136-ζ135-ζ132 | -ζ1311-ζ138-ζ137 | complex lifted from C2×C13⋊C3 |
ρ25 | 3 | 3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ133+ζ13 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ1311-ζ138-ζ137 | ζ136+ζ135+ζ132 | complex lifted from C2×C13⋊C3 |
ρ26 | 3 | 3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ1312-ζ1310-ζ134 | ζ139+ζ133+ζ13 | complex lifted from C2×C13⋊C3 |
ρ27 | 3 | -3 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ136+ζ135+ζ132 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | -ζ139-ζ133-ζ13 | -ζ1312-ζ1310-ζ134 | complex lifted from C2×C13⋊C3 |
ρ28 | 3 | -3 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | ζ1312+ζ1310+ζ134 | -ζ139-ζ133-ζ13 | complex lifted from C2×C13⋊C3 |
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 37)(12 38)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 49)(24 50)(25 51)(26 52)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 25)(13 26)(27 40)(28 41)(29 42)(30 43)(31 44)(32 45)(33 46)(34 47)(35 48)(36 49)(37 50)(38 51)(39 52)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)
(2 4 10)(3 7 6)(5 13 11)(8 9 12)(15 17 23)(16 20 19)(18 26 24)(21 22 25)(28 30 36)(29 33 32)(31 39 37)(34 35 38)(41 43 49)(42 46 45)(44 52 50)(47 48 51)
G:=sub<Sym(52)| (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)>;
G:=Group( (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51) );
G=PermutationGroup([[(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,37),(12,38),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,49),(24,50),(25,51),(26,52)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,25),(13,26),(27,40),(28,41),(29,42),(30,43),(31,44),(32,45),(33,46),(34,47),(35,48),(36,49),(37,50),(38,51),(39,52)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52)], [(2,4,10),(3,7,6),(5,13,11),(8,9,12),(15,17,23),(16,20,19),(18,26,24),(21,22,25),(28,30,36),(29,33,32),(31,39,37),(34,35,38),(41,43,49),(42,46,45),(44,52,50),(47,48,51)]])
C22×C13⋊C3 is a maximal subgroup of
D26⋊C6
Matrix representation of C22×C13⋊C3 ►in GL4(𝔽79) generated by
78 | 0 | 0 | 0 |
0 | 78 | 0 | 0 |
0 | 0 | 78 | 0 |
0 | 0 | 0 | 78 |
78 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 50 | 66 | 1 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
23 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 12 | 49 | 66 |
0 | 40 | 67 | 29 |
G:=sub<GL(4,GF(79))| [78,0,0,0,0,78,0,0,0,0,78,0,0,0,0,78],[78,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,50,1,0,0,66,0,1,0,1,0,0],[23,0,0,0,0,1,12,40,0,0,49,67,0,0,66,29] >;
C22×C13⋊C3 in GAP, Magma, Sage, TeX
C_2^2\times C_{13}\rtimes C_3
% in TeX
G:=Group("C2^2xC13:C3");
// GroupNames label
G:=SmallGroup(156,12);
// by ID
G=gap.SmallGroup(156,12);
# by ID
G:=PCGroup([4,-2,-2,-3,-13,155]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^13=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^9>;
// generators/relations
Export
Subgroup lattice of C22×C13⋊C3 in TeX
Character table of C22×C13⋊C3 in TeX