Copied to
clipboard

G = C22×C13⋊C3order 156 = 22·3·13

Direct product of C22 and C13⋊C3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C22×C13⋊C3, C262C6, (C2×C26)⋊3C3, C132(C2×C6), SmallGroup(156,12)

Series: Derived Chief Lower central Upper central

C1C13 — C22×C13⋊C3
C1C13C13⋊C3C2×C13⋊C3 — C22×C13⋊C3
C13 — C22×C13⋊C3
C1C22

Generators and relations for C22×C13⋊C3
 G = < a,b,c,d | a2=b2=c13=d3=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c9 >

13C3
13C6
13C6
13C6
13C2×C6

Character table of C22×C13⋊C3

 class 12A2B2C3A3B6A6B6C6D6E6F13A13B13C13D26A26B26C26D26E26F26G26H26I26J26K26L
 size 111113131313131313133333333333333333
ρ11111111111111111111111111111    trivial
ρ21-11-111-111-1-1-11111-1-1-1111-1-1-1-11-1    linear of order 2
ρ311-1-111-1-1-111-11111111-1-1-1-1-1-1-1-11    linear of order 2
ρ41-1-11111-1-1-1-111111-1-1-1-1-1-11111-1-1    linear of order 2
ρ51111ζ32ζ3ζ32ζ3ζ32ζ3ζ32ζ31111111111111111    linear of order 3
ρ611-1-1ζ3ζ32ζ65ζ6ζ65ζ32ζ3ζ61111111-1-1-1-1-1-1-1-11    linear of order 6
ρ711-1-1ζ32ζ3ζ6ζ65ζ6ζ3ζ32ζ651111111-1-1-1-1-1-1-1-11    linear of order 6
ρ81-11-1ζ3ζ32ζ65ζ32ζ3ζ6ζ65ζ61111-1-1-1111-1-1-1-11-1    linear of order 6
ρ91111ζ3ζ32ζ3ζ32ζ3ζ32ζ3ζ321111111111111111    linear of order 3
ρ101-11-1ζ32ζ3ζ6ζ3ζ32ζ65ζ6ζ651111-1-1-1111-1-1-1-11-1    linear of order 6
ρ111-1-11ζ3ζ32ζ3ζ6ζ65ζ6ζ65ζ321111-1-1-1-1-1-11111-1-1    linear of order 6
ρ121-1-11ζ32ζ3ζ32ζ65ζ6ζ65ζ6ζ31111-1-1-1-1-1-11111-1-1    linear of order 6
ρ13333300000000ζ1311138137ζ13121310134ζ13913313ζ136135132ζ136135132ζ13121310134ζ1311138137ζ1311138137ζ13913313ζ136135132ζ13913313ζ136135132ζ13121310134ζ1311138137ζ13121310134ζ13913313    complex lifted from C13⋊C3
ρ143-3-3300000000ζ1311138137ζ13121310134ζ13913313ζ136135132136135132131213101341311138137131113813713913313136135132ζ13913313ζ136135132ζ13121310134ζ13111381371312131013413913313    complex lifted from C2×C13⋊C3
ρ15333300000000ζ13913313ζ1311138137ζ136135132ζ13121310134ζ13121310134ζ1311138137ζ13913313ζ13913313ζ136135132ζ13121310134ζ136135132ζ13121310134ζ1311138137ζ13913313ζ1311138137ζ136135132    complex lifted from C13⋊C3
ρ16333300000000ζ13121310134ζ136135132ζ1311138137ζ13913313ζ13913313ζ136135132ζ13121310134ζ13121310134ζ1311138137ζ13913313ζ1311138137ζ13913313ζ136135132ζ13121310134ζ136135132ζ1311138137    complex lifted from C13⋊C3
ρ1733-3-300000000ζ136135132ζ13913313ζ13121310134ζ1311138137ζ1311138137ζ13913313ζ1361351321361351321312131013413111381371312131013413111381371391331313613513213913313ζ13121310134    complex lifted from C2×C13⋊C3
ρ183-33-300000000ζ13121310134ζ136135132ζ1311138137ζ139133131391331313613513213121310134ζ13121310134ζ1311138137ζ1391331313111381371391331313613513213121310134ζ1361351321311138137    complex lifted from C2×C13⋊C3
ρ193-3-3300000000ζ13913313ζ1311138137ζ136135132ζ13121310134131213101341311138137139133131391331313613513213121310134ζ136135132ζ13121310134ζ1311138137ζ139133131311138137136135132    complex lifted from C2×C13⋊C3
ρ203-33-300000000ζ136135132ζ13913313ζ13121310134ζ1311138137131113813713913313136135132ζ136135132ζ13121310134ζ131113813713121310134131113813713913313136135132ζ1391331313121310134    complex lifted from C2×C13⋊C3
ρ213-33-300000000ζ13913313ζ1311138137ζ136135132ζ1312131013413121310134131113813713913313ζ13913313ζ136135132ζ1312131013413613513213121310134131113813713913313ζ1311138137136135132    complex lifted from C2×C13⋊C3
ρ22333300000000ζ136135132ζ13913313ζ13121310134ζ1311138137ζ1311138137ζ13913313ζ136135132ζ136135132ζ13121310134ζ1311138137ζ13121310134ζ1311138137ζ13913313ζ136135132ζ13913313ζ13121310134    complex lifted from C13⋊C3
ρ2333-3-300000000ζ13121310134ζ136135132ζ1311138137ζ13913313ζ13913313ζ136135132ζ131213101341312131013413111381371391331313111381371391331313613513213121310134136135132ζ1311138137    complex lifted from C2×C13⋊C3
ρ243-3-3300000000ζ13121310134ζ136135132ζ1311138137ζ13913313139133131361351321312131013413121310134131113813713913313ζ1311138137ζ13913313ζ136135132ζ131213101341361351321311138137    complex lifted from C2×C13⋊C3
ρ2533-3-300000000ζ13913313ζ1311138137ζ136135132ζ13121310134ζ13121310134ζ1311138137ζ139133131391331313613513213121310134136135132131213101341311138137139133131311138137ζ136135132    complex lifted from C2×C13⋊C3
ρ2633-3-300000000ζ1311138137ζ13121310134ζ13913313ζ136135132ζ136135132ζ13121310134ζ13111381371311138137139133131361351321391331313613513213121310134131113813713121310134ζ13913313    complex lifted from C2×C13⋊C3
ρ273-3-3300000000ζ136135132ζ13913313ζ13121310134ζ1311138137131113813713913313136135132136135132131213101341311138137ζ13121310134ζ1311138137ζ13913313ζ1361351321391331313121310134    complex lifted from C2×C13⋊C3
ρ283-33-300000000ζ1311138137ζ13121310134ζ13913313ζ136135132136135132131213101341311138137ζ1311138137ζ13913313ζ13613513213913313136135132131213101341311138137ζ1312131013413913313    complex lifted from C2×C13⋊C3

Smallest permutation representation of C22×C13⋊C3
On 52 points
Generators in S52
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 37)(12 38)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 49)(24 50)(25 51)(26 52)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 25)(13 26)(27 40)(28 41)(29 42)(30 43)(31 44)(32 45)(33 46)(34 47)(35 48)(36 49)(37 50)(38 51)(39 52)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)
(2 4 10)(3 7 6)(5 13 11)(8 9 12)(15 17 23)(16 20 19)(18 26 24)(21 22 25)(28 30 36)(29 33 32)(31 39 37)(34 35 38)(41 43 49)(42 46 45)(44 52 50)(47 48 51)

G:=sub<Sym(52)| (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)>;

G:=Group( (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51) );

G=PermutationGroup([[(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,37),(12,38),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,49),(24,50),(25,51),(26,52)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,25),(13,26),(27,40),(28,41),(29,42),(30,43),(31,44),(32,45),(33,46),(34,47),(35,48),(36,49),(37,50),(38,51),(39,52)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52)], [(2,4,10),(3,7,6),(5,13,11),(8,9,12),(15,17,23),(16,20,19),(18,26,24),(21,22,25),(28,30,36),(29,33,32),(31,39,37),(34,35,38),(41,43,49),(42,46,45),(44,52,50),(47,48,51)]])

C22×C13⋊C3 is a maximal subgroup of   D26⋊C6

Matrix representation of C22×C13⋊C3 in GL4(𝔽79) generated by

78000
07800
00780
00078
,
78000
0100
0010
0001
,
1000
050661
0100
0010
,
23000
0100
0124966
0406729
G:=sub<GL(4,GF(79))| [78,0,0,0,0,78,0,0,0,0,78,0,0,0,0,78],[78,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,50,1,0,0,66,0,1,0,1,0,0],[23,0,0,0,0,1,12,40,0,0,49,67,0,0,66,29] >;

C22×C13⋊C3 in GAP, Magma, Sage, TeX

C_2^2\times C_{13}\rtimes C_3
% in TeX

G:=Group("C2^2xC13:C3");
// GroupNames label

G:=SmallGroup(156,12);
// by ID

G=gap.SmallGroup(156,12);
# by ID

G:=PCGroup([4,-2,-2,-3,-13,155]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^13=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^9>;
// generators/relations

Export

Subgroup lattice of C22×C13⋊C3 in TeX
Character table of C22×C13⋊C3 in TeX

׿
×
𝔽